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LElTER TO THE EDITOR 

Boson realisation of symplectic algebras 

M Moshinsky? 
Instituto de Fisica, UNAM, Apdo Postal 20-364, Mixico, DF, 01000 Mixico 

Received 1 I October 1984 

Abstract. The boson realisation of the two-dimensional symplectic Lie algebra sp(2) for 
a given irreducible representation (irrep) of the Sp(2) group has been known for a long 
time. More recently the boson realisation of the 2d-dimensional symplectic Lie algebras 
sp(2d) have been derived for particular irreps of the Sp(2d) group. In this letter we 
outline the corresponding result for an arbitrary irrep of Sp(2d). 

As early as 1940 Holstein and Primakoff obtained a realisation of the 4 2 )  Lie algebra 
in terms of boson creation and annihilation operators for a given value of the Casimir 
operator, i.e. for a definite irreducible representation (irrep) of the SU(2) group. It is 
easy to extend this realisation (Mello and Moshinsky 1976, Deenen and Quesne 1982a) 
to the su( 1, 1 )  = sp(2) Lie algebra for a definite irrep of the Sp(2) group. This simple 
result immediately suggests the following question: Is it possible to obtain the boson 
realisation of a sp(2d) Lie algebra for an arbitrary irrep of the Sp(2d) group when d 
is any integer? 

One answer to this question has already been given by Rowe (1984), but this letter 
is based on the point of view developed by Castaiios er a1 (1984b), who gave a complete 
discussion of this problem when d =2,  i.e. sp(4). As this case already has the main 
features of the general problem, we proceed to extend the results to an arbitrary sp(2d). 

We start by expressing the generators of the sp(2d) Lie algebra in terms of creation 
qis and annihilation tis operators of a system of n particles, which are associated with 
the index s = 1, 2, . . . , n, in a d-dimensional harmonic oscillator potential for which 
the component index is i = 1, 2, . . . , d. The generators of sp(2d) are then (Deenen 
and Quesne 1982b, Castaiios er a1 1984b) 

where in ( 1  b )  we used the commutation rule [tj,, vis]  = 6,6,,. As is customary (Mosh- 
insky 1968) we can divide the set of operators ( 1 )  into raising, weight and lowering 
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generators given by 

Cii i = 1 , 2  , . . . ,  d, 

C, with i > j. Bij ; 

The lowest weight (LW) state denoted by the ketlLw) then satisfies the equations 

B,(Lw) = 0, C,lLW) = 0 for i>j; (3a, b) 

c t i I ~ w )  = ( U ,  +fn)lLw), (3c) 

where we note that in (3c) the wi are integer eigenvalues of the number operators 
2:=, vis&, i = 1,2, . . . , d, which furthermore from (36) satisfy the inequality OS wI 6 
w 2 . .  . S  wd. The eigenvalues of Cii characterise thus the irrep of Sp(2d) and they can 
be put in the order 

[wl+fn ,w2+fn  , . . . ,  @d+in] .  (4) 

The question raised at the end of the first paragraph refers now to our knowledge 
of the boson realisation of the sp(2d) Lie algebra associated with the irrep (4) of the 
Sp(2d) group. 

When all the wi in (4) are equal an answer was outlined by the author (Moshinsky 
1982), while a full and detailed analysis of the problem by an independent procedure 
was given by Deenen and Quesne (1982b). For d = 2 but a general irrep, i.e. w ,  # w2 
the problem was discussed by Castaiios et a1 (1984b). In this note we outline the 
solution for arbitrary d and any irrep of the type (4). 

We start by indicating, as was discussed in other publications (Deenen and Quesne 
1983a, Moshinsky 1984, Moshinsky et a1 1984, Rowe et a1 1984), that we not only 
need now the symmetric boson operators b i  = b;, b, = bji, satisfying the commutation 
relations 

but also an independent set of generators of a Lie algebra u(d) ,  which we designate 
by S,,  and that have the commutation relations 

[ S , ,  b:,,] = 0, [Si,, bi,r]= 0, [S , ,  S,y] = Sij.6,,-Si,6,.. 

We require also that b;, b, are Hermitian conjugate to each other and that S$ = Sji. 
Clearly the b:, b,, Sij are the generators of a direct sum of a Weyl Lie algebra in 
id (d  + 1)  dimensions and a unitary Lie algebra in d dimensions, i.e. w[d(d + 1) /2]0  
u(d).  We shall frequently use a matrix notation for the operators mentioned above, e.g. 

B+ = II B; 11, b+ = Ilbfll, s=  llS,ll, etc. (6% b, c )  

L = btb, (7) 

We now define the matrix L = ( 1  L, 11 by the product 

as well as the matrix J = llJ,l\ by the sum 

J = L + S .  (8) 
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From (7) and ( 5 )  we see immediately that the commutation relations of the elements 
of the matrix L are 

[L- .  IJ 3 L,.,.] = L,&j - Li76,., (9) 

and similarly for the elements of J, indicating that these matrices are generators of 
u(d) Lie algebras. 

We would like now to express B t ,  B,, C, of ( 1 )  in terms b t ,  b,, S,  in such a way 
that when the latter satisfy the commutation rules (5), the former have the ones 
associated with an sp(2d) Lie algebra, i.e. 

[B,,  Bi.jt] = 0,  [B;, B&] = 0, (1% b )  

[C.. 1J Ci7.) = C,!6,, - ci,jSij.. 
To begin with if we write 

C.. V B  = J. .  (11) 

as suggested in previous publications (Deenen and Quesne 1983a, b, Rowe et a1 1984, 
Moshinsky 1984) it is clear that (lOf) is satisfied. For B ;  we note that with respect 
to the U(d)  subgroup of Sp(2d) whose generators are the C, it corresponds to the 
irrep given by the partition [2].  Similarly the b; correspond to the partition [2] for 
the U(d) group whose generators are the JG of (8). To express then B; in terms of 
b; we proceed as follows. We consider the operators that are traces (Tr) of the matrices 

Q r p  = Tr(Lr-PSP), O S ~ S  r - l , l  S r S d ,  (12) 

of which clearly we have $ d ( d  + 1). These operators commute with the J,  as can be 
easily seen by induction and thus are invariants of U(d). Clearly then the commutator 

[ Q r p  b;I (13) 

is also characterised by the irrep [2] of U(d) and thus we can write 
d r-1  

B + =  c c [Qm b']Frp 
r = l  p=o  

where the FrP are functions of b; ,  b,, S ,  that are invariant under the U(d) group 
(Castafios et a1 1984b). To get B in terms of b we just have to take the Hermitian 
conjugate of (14). 

The question is now how to determine the FrP. For this we need the matrix elements 
for BC of (14) with respect to an appropriate set of boson states that include the 
intrinsic states related to the unitary group in d-dimensions associated with the S,. 
For the bosons the states are given by polynomials in the bc acting on the vacuum 
state IO). These polynomials can be characterised by an irrep [A,  . . . A d ]  of U(d) in 
which all the A's are even (Moshinsky 1982, Deenen and Quesne 1982b), i.e. 

p~A,...Ad~(b~)lO). (15) 

The intrinsic states are eigenstates of the Casimir operators Tr(Sr),  r = 1, . . . , d, of the 
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d-dimensional unitary group and thus can be characterised by the partition in the ket 

l[wiwZ * w d l ) .  (16) 

The full state is the direct product of (15) and (16) (Deenen andQuesne 1984, Rosensteel 
and Rowe 1983, Rowe et al 1984, Moshinsky et a1 1984) and it is convenient to couple 
it to a definite irrep of U(d) ,  i.e. 

I[Ai 1 . .  A d ] [ W i  . . w d ] a [ h i  * h d ] ) = [ ~ A , . . . A , ~ ( b ~ ) l O )  xI[wl * * w d l ) l R [ h l  ... h d ]  (17) 

where the R are the set of multiplicity indices (Moshinsky 1963) required to characterise 
the Clebsch-Gordan coefficient of U( d ) .  

We now consider the reduced matrix elements of the right-hand side of (14) with 
respect to the states (17). We have then in it the matrix elements 

( [ A ; .  . . A & ] [ w , .  . . W d ] R ' [ h l . .  . h d ] / F r P I I A i . .  . / \ d ] [ W i . .  . W d ] n [ h i . .  . h d ] )  

F ~ ' ~ A ;  . . . A ~ ] , ~ [ A , . . . A , ~ ( [ h i  . . . h d ] ,  * .  . w d ] )  (18) 

as well as those of 

and b;, where the latter can be obtained with the help of Racah coefficients (Rosensteel 
and Rowe 1983) of U(d)  and well known (Moshinsky 1968) reduced matrix elements 
of ( L r - p ) ; , ,  b; with respect to the states (15) and of (Sp) , ,  with respect to the states 
(16). Thus if the reduced matrix element of B+ on the left-hand side of (14) is known 
independently we get a set of linear equations for the unknowns (18). 

Note that the number of unknowns of the type (18) is given by 

Ctd(d + 1 )1q2 (20) 

where q is the number of possibilities for R[A,.. . A d ]  consistent with fixed [ h ,  . . . h d ] ,  

[ U ,  . . . w d ] ,  while $ d ( d  + 1) is the corresponding number for r, p .  
The number of matrix elements of B+ for fixed [ h i . .  . / I & ] ,  [ h ,  . . . h d ]  is also related 

to q2, but besides 

[ h i . .  . h & ]  = [h i  .. . h,+2. .  . h d ]  or [hi  . . . h, + 1 . . . h, + 1 . . . h d ]  (21) 

for all values 1 =z i < j  s d which gives i d (  d + I )  other possibilities. Thus the number 
of equations is also given by (20) and equals the number of unknowns which allows 
their complete determination. 

Our problem is now to find an independent procedure of obtaining the reduced 
matrix elements of the operator B+ with respect to the states (17). Fortunately this 
has been developed recently (Rowe et a1 1984, Deenen and Quesne 1984, Moshinsky 
et a1 1984b, Castafios et a1 1984a) in connection with efforts for determing the matrix 
elements of the generators of sp(2d) Lie algebra for the states characterised by irreps 
of the chain of groups Sp(2d)3U(d) .  In these developments the generator B+ is 
written as 

(22) 

where K is an Hermitian operator invariant under u(d) ,  i.e. [J;, ,  K ]  = 0.  The operator 

b f =  K b + K - '  
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K satisfies the equation (Moshinsky et a1 1984, Rowe et al 1984, Deenen and Quesne 
1984) 

bK ’ = K ’( bS + Sb + bb+ b - ( d + 1 ) 6 ) , (23) 

where S is the tra’nsposed of the matrix S. As the matrix elements of b, b’, S with 
respect to the states (17) are well known, the equation (23) provides a recursion relation 
for the matrix elements of K 2  with respect to these states. From the matrix K 2  one 
can get, at least numerically, the matrix elements of K ,  K - ’  with respect to the states 
(17) and thus, substituting in (22), get an independent procedure for determining the 
matrix elements of B+.  

We see thus that, at least numerically, one can get the matrix elements of the 
operators FrP appearing in (14) and thus have a boson realisation of the generators 
of the sp(2d) Lie algebra. If the matrix elements of K can be obtained from those of 
K 2  analytically-which implies that q of (20) must be small enough so that the q x q 
matrix K for fixed [ h ,  . . . h d ] ,  [ U ,  . . . wd] gives a secular equation 

det(K - A I )  = 0 (24) 

of degree smaller than five-then the matrices of the FrP operators can also be obtained 
analytically and they can in turn be written as functions of b+,  b, S that are invariant 
under the u (d )  Lie algebra whose generators are the J. 

In these cases there is then an explicit operator relation between the generators ( 1 )  
of sp(2d) and those of w[fd(d + l ) ]Osu(d) ,  i.e. the b+,  b, S. This relation is trivial to 
determine (Mello and Moshinsky 1976, Deenen and Quesne 1982a) for d = 1 and was 
discussed explicitly (Castafios et a1 1984b) for some special cases when d = 2, as well 
as for arbitrary d where in the irrep (4) of Sp(2d) all the wi are equal (Deenen and 
Quesne 1982b). 

The present analysis thus generalises to any d and arbitrary irrep (4) of Sp(2d) 
the particular cases considered previously. 

The author would like to thank 0 Castaiios and E Chac6n in MCxico and J Deenen 
and C Quesne in Brussels for many discussions on the subject of the present letter. 
He would like also to acknowledge a recent preprint of Deenen and Quesne ‘Boson 
representations of the real symplectic group and their applications’ in which a different 
boson realisation is presented. 
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